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This paper shows how information inherent in the process constraints and measurement statistics can be used to 

enhance flow and inventory data. Two important graph-theoretic results are derived and used to simplify the 

reconciliation of conflicting data and the estimation of unmeasured process streams. The scheme was implemented 

and evaluated on a CDC-6400 computer. For a 32-node 61-stream problem, the results indicate a 42 to 60 % 

reduction in total absolute errors, for the three cases in which the number of measured streams were 36, 50, and 

61 respectively. A gross error detection criterion based on nodal imbalances is proposed. This criterion can be 

evaluated prior to any reconciliation calculations and appeared to be effective for errors of 20 % or more for the 

simulation cases studied. A logically consistent scheme for identifying the error sources was developed using this 

criterion. Such a scheme could be used as a diagnostic aid in process analysis. 

 
 
 

 
 

 Introduction 

 

Process data is the foundation upon which all control 

and evaluation of process performance are based. 

Because of the integrated nature of modern process 

plants, ramifications of process decisions are often broad 

and difficult to foresee.  Inaccurate process data can 

easily lead to poor decisions, which will adversely affect 

many parts of the process.  Many process control and 

optimization activities are also based on small 

improvements in process performance; errors in process 

data or arbitrary methods of resolving them can easily 

exceed and mask actual changes in process performance.    

 

 

Moreover, because of the immense scale of operation, the impact 

of any error is greatly magnified in absolute terms.   

    In recent years many digital computers have been installed 

within refineries and chemical complexes. These installations are 

usually justified on the basis of specific applications such as 

process control or gasoline blending.  The introduction of digital 

computers in the operational environment brought forth many 

beneficial side effects, not the least of which is the increasing 

availability of process data.  Certain data, which were not 

previously collected or recorded, are now acquired and stored 

because of computer applications.  Other data, which were 

previously scattered 
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in different sources and appeared in various formats, are now 

concentrated in computer files in forms which are highly 

accessible. Moreover, improved process instrumentation makes it 

feasible to acquire such data on a frequent and regular basis. With 

these advances in data acquisition and data processing capabilities 

the stage is set for developing a comprehensive and systematic 

basis for process analysis. 

In this paper we shall consider process flow rates measured at a 

given instant in time and address the techniques of enhancing the 

information content of these measurements through the use of 

network and statistical information. It is convenient to discuss this 

data enhancement in terms of three separate but related problems. 

Morphologically, the simplest situation is one in which all streams 

are measured and all measurements are subject to normal mea-

surement errors only. The problem is how to extract best estimates 

of stream and process conditions from apparently conflicting 

observations. This is the problem of data reconciliation. In most 

operating processes, not all of the variables are measured, but we 

may want to estimate the unmeasured process variables in terms of 

the measured process data. This problem may be termed 

coaptation. Finally, gross errors may be incurred as a result of 

defective measurements or out-of-tune instruments, and leaks, 

evaporation, deposition, etc. may result in physical losses. Isolation 

and identification of such gross errors will be valuable not only in 

monitoring process performance but also in scheduling equipment 

and instrument maintenance. The problem is addressed in fault 

detection and rectification. 

 

The Process Graph 

 

The interdependence of flow and inventory data in a process is 

most naturally expressed in terms of the material balances. In order 

to explore the network characteristics of the process, it is 

convenient to define a process graph, P, which exhibits the 
following characteristics. 

1. It is a directed graph (digraph). The directions of its arcs are 

the same as those of the streams in the process flow sheet, which 

are usually determined by processing requirements. 

2. The nodes in the process graph generally correspond to the 

units, tanks, and junctions in the process flow sheet. But since, at 

any given instant of time, only a subset of process units and tanks 

may be activated, the process graph may only contain a subset of 

such nodes. 

3. The process graph always contains an environment node. The 

process receives its feeds (including utilities) 
 

 

 

from the “environment” and supplies its products to the 

“environment”. The environment node may thus be perceived as 

the complement of the process. 

4. With the inclusion of the environment node, the process 

graph is always cyclic. Every node (vertex) is in at least one cycle 

and the degree of each vertex is at least two. 

Figure 2 shows an example of a process graph derived from the 

process sheet in Figure 1. Note that an inventory change in any 

unit is represented by a fictitious link to the environment node. It 

will be directed away from the unit if an increment is indicated and 

directed toward the unit, if otherwise. In this example we have 

assumed inventory increases in all tanks except tank 4, and 

indicated any inventory increase or decrease with a “+“ or a “-“ 

sign in the appropriate equipment symbols in Figure 1. 

The process graph is amenable to all the usual algebraic 

representations of a digraph. For the sake of brevity in our 

presentation we will refer interested readers to Deo (1974) for the 

definitions of such representations and other graph terminology 

used in this paper. We will make frequent use of the incidence 

matrix whose rows correspond to the nodes and whose columns 

correspond to the arcs in the process graph. The incidence matrix 

A corresponding to Figure 2 is shown in Table I. For a connected 

(n + 1)-node process graph, only n rows of the incidence matrix are 

linearly independent. Physically, this property stems from the fact 

that there are only n independent nodal balances in addition to the 

overall balance in an (n + 1)-node network. In fact any n nodal 

balances could be chosen to form an independent set of rows of A, 

and it usually turns out to be convenient to omit the environment 

node in this construction. In our notation then A is an n x m matrix 

of rank n. It may be noted that the incidence matrix would permit 

the representation of multiple arcs between any pair of nodes. It 

will be used to express the material balances in the next section. 

 

Reconciliation and Coaptation 

 

In process flow data reconciliation we start with an over-

determined system. The nodal material balances can only be 

satisfied if we are allowed to make adjustments to the 

measurements themselves. Let us consider first the situation in 

which all stream and inventory data associated with 

 

 

As we pointed out earlier, inventory changes can always be 

represented as fictitious streams, and hence, will require no 

additional notation or separate treatment. We shall assume
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that the measurement errors are normally distributed random 

variables with zero mean and positive definite covariance matrix, 

Q. The least-squares estimation for this problem is given by 

subject to the material conservation constraints 

Under our statistical assumption, this will be equivalent to the 

maximum likelihood and minimum variance unbiased estimation. 

The solution to this problem, as given by Kuehn and Davidson 

(1961), is 

   More commonly, only some of the process streams are measured 

and we wish to estimate the values of the unmeasured variables as 

well as reconcile the values of the measured variables. There are 

now two incidence matrices: an n x (m - s) matrix A1 corresponding 

to the measured streams, v and an n x s matrix A2 corresponding to 

the unmeasured streams, u. A similar development of the least-

squares estimation leads to 

subject to the constraints 

This estimation problem can, of course, be solved as it stands. But 

a much more efficient strategy can be developed based on two 

important graph-theoretic results. We shall now state these results 

and refer the readers to Appendix A for the proofs. (1) 

Reconciliation with missing measurements can be resolved into 

two disjoint problems:  reconciliation on a graph which is formed 

by pairwise aggregation of the nodes linked by arcs of unmeasured 

flows, and the estimation of unmeasured flows in the tree arcs of 

the process graph. (2) Missing flow measurements can be 

determined uniquely, if and only if the unmeasured arcs form an 

acyclic graph (i.e., trees). 

The first result leads to a reduction of the dimensions of the 

computational problems. When two nodes are aggregated, the arcs 

external to the two nodes are preserved, but all internal links (arcs) 

between them are obliterated. The reverse process takes place when 

the flow rate of a hitherto unmonitored stream is measured. The 

impact of measurements on the problem structure of process flow 

data reconciliation and coaptation is delineated by the first graph-

theoretic result. 

The second result pinpoints the unmeasured streams whose flow 

rates can be uniquely determined and other unmeasured streams 

whose flow rates cannot be determined. Note that a process graph 

may contain both categories of unmeasured arcs. In coaptation the 

unmeasured streams are expressed in terms of the reconciled flows 

of the aggregated graph and measured streams that are internal to 

the aggregated nodes. Because the arcs form an acyclic graph, 

coaptation can always be performed sequentially. 

 

Computer Implementation 

 

A flow reconciliation-coaptation scheme using the foregoing 

graph-theoretic results was implemented on a CDC6400 computer. 

The input to this program (RECON) consists of the following 

items: (1) dimensions of the process graph: the total number of 

measured streams, the number of nodes and their labels;   

 

(2) information on the measured streams: measured values and 

variances; (3) structure of the process graph in terms of a stream-

node connection table. 
In this implementation we confine ourselves to the situations in 

which there is no statistical interaction between measured values. 

In other words, the program provides for diagonal covariance 

matrices only. 

After checking over the consistency of the input, the in-

formation is used to construct: (a) an (n — q) x (m — s) incidence 

matrix B1 which represents a maximal digraph generated from the 

process graph by node aggregation such that all streams of B1 are 

measured; we shall refer to this as the reconciliation graph;    (b) a 

q x q incidence matrix B2 representing a maximal acyclic subgraph 

(or trees) of unmeasured arcs; the nodes spanned by these trees 

may form a part of the aggregated nodes of B1, but they are not 

individually represented in the reconciliation graph;       (c) a q x 

(m — s) incidence matrix B12 which delineates the adjacency of the 

measured streams with the nodes on the maximal unmeasured 

trees; (d) a list of unmeasured streams whose flow rates can 

assume arbitrary values. These streams form loops with other 

unmeasured streams. Their flow rates will be set to zero for the 

purpose of our computation. Note that both B1 and B12 contain 

columns for all the measured streams of the process graph. 

As an illustration of this construction, consider the process 

graph in Figure 2 of which the unmeasured streams are streams 4, 

8, 10, 11, 13, and 14. Through pairwise aggregation of nodes 

linked by unmeasured arcs, we obtain the reconciliation graph of 

lower dimension shown in Figure 3b. Notice that the new node 7’ 

contains the process nodes 7 and 10 and the new environment node 

contains the process nodes 1, 3, 4, and 8 in addition to the original 

environment node. The two trees corresponding to the unmeasured 

arcs are shown in Figure 3a. In this construction the flow rate in 

stream 8 can assume arbitrary values but will be set to zero in the 

program (see item (d) above). Table II shows the three incidence 

matrices, B1, B2, and B12. Note that B1 contains only entries 

corresponding to the measured arcs in the reconciliation graph. 

Stream 1 which links the same pair of nodes as the unmeasured 

stream 13 is not represented in B1. Note also that because only tree 

arcs are included, B2 will always be a square matrix. In fact its 

rows and columns can always be permuted to yield a lower triangle 

matrix. In this example n = 10, m = 16, s = 6, and q = 5. 

In the actual program implementation list-processing procedures 

are used to carry out the graphical decomposition. The program 

makes use of stream-node connection tables to represent the 

graphical information and a subroutine that will generate a 

compact incidence matrix given a stream-node connection table. 

The first step in the processing is to sort the stream-node 

connection table into two sections containing unmeasured and 

measured streams, respectively. Table III shows the connection 

table for the process graph shown in Figure 2. The upper 

(unmeasured) section of this table is used to generate a list of tree 

arcs, which is then processed to produce B2. It is also used to 
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generate a node replacement list which is in turn used to modify 

the lower (measured) section of the connection table from which 

B1 is generated. Finally, B12 is constructed from the measured 

streams and the nodes linked by unmeasured streams. 

Since there are no unmeasured streams in the reconciliation 

graph, the solution to the reconciliation problem is 

Note that the solution for all measured streams is given here. But 

the measured streams that are internal to the aggregated nodes are 

not adjusted nor do they contribute to the reconciliation of other 

measured streams, since the corresponding columns of B1 contain 

only zeros. 

The estimates of the unmeasured flows are given by 

A derivation of this equation may be found in Appendix B. 

Because u1 is a linear combination of the measured flows v, 

 
 

we can apply the Addition Theorem for the normally distributed 

random variables (Hald, 1952) to obtain the variances for the 

estimated values of the unmeasured streams. Let p be the vector of 

these variances. Then we have 

 

The reader should be cautioned against the use of eq 10 if the 

constraints are incorrect (e.g., on account of leaks), since additional 

errors will be introduced to the estimates. 

 

Simulation of Flow Reconciliation 

 

The effectiveness of the flow reconciliation scheme was 

evaluated by case studies using computer simulation. For this 

purpose a process graph was generated for the atmospheric section 

of the crude distillation unit at the Mobil Refinery in Joliet, Ill. 

This graph which contains 61 streams and 32 nodes (including the 

environment node) is shown in Figure 4. The environment node is 

omitted in this representation for typographical convenience. It is 

understood that all free arcs are connected to the environment 

node. A set of consistent flow rates was established and a standard 

deviation between 0 and 10% of the flow rate was assigned to each 

arc. These values were used in all subsequent simulations. 

In order to investigate the effect of unmeasured streams on 

reconciliation two other cases based on the same process network 

with 11 and 25 unmeasured streams were also investigated. A total 

of 20 runs were made for each case. 

For each run a pseudo-random number generator based on the 

true flows and assigned standard deviations was used to generate 

the measurement vector. The measurement errors were found to lie 

between 0 and 30% of the true values µµµµ. 

The results of these simulation runs were examined in several 

different ways in order to evaluate the effectiveness of the 

reconciliation scheme. The characteristic dimensions for the three 

cases are given in the second and third columns of Table IV. The 

fourth column shows the percentage of total absolute error 

remaining after reconciliation for the three cases over all the runs. 

The total absolute error is the sum of the absolute values of errors 

associated with the measurements. The ratio of total absolute errors 

before and after reconciliation is a gross measure of error reduction 

due to reconciliation. The results in Table IV show that significant 

overall improvement in accuracy is obtained in each case, but that 

the extents of enhancement are quite different in the three cases. As 

might be expected, the improvement is most notable, when the 

number of streams per node is small. But the result for case 3 also 

clearly indicates a limit to the improvement using data                     
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reconciliation alone. 

While the total residual error gives a useful gross charac-

terization, the stream flow rates are unequally affected by 

reconciliation. The last column of Table IV shows the percentage 

of streams for which the absolute errors in the estimated values v^ 

are less than the absolute errors in the original measurements. In 

the remainder of these streams there is either no improvement or 

some deterioration in absolute errors. However, a close 

examination reveals that the errors associated with most of these 

streams were much less than 1% of the true flow rates to start with. 

So the maladjustment, undesirable though it is, is not nearly as 

serious as the number of these streams may suggest. 

The error histograms in Figures 5, 6, and 7 give a graphic 

description of the situation from yet another viewpoint. In these 

plots the percent relative errors (the ratio of absolute error to the 

true flow rate) was used to represent the different streams on a 

common basis. In all three cases the reduction in the number of 

large errors is accompanied by an increase in the number of small 

errors. In other words, there is a definite shift in the histogram 

toward lower error ranges after reconciliation. Moreover, in each 

case the range between 0 and 0.5% relative errors shows the largest 

increase in the number of streams. These results indicate that small 

errors constitute the largest fraction of error incidence after 

reconciliation. 

 

Detection of Gross Errors 

 

Our treatment of process data enhancement thus far assumes that 

the only errors present in our data are normally distributed 

measurement errors with zero means and known variances. In 

practice the raw process data may also contain other types of errors 

which are caused by nonrandom events. For instance, instrument 

biases may not be adequately compensated, measuring devices 

may malfunction, or the process representation may be incomplete 

or inaccurate. The last category of errors includes leaks, depo-

sitions, and inadequate accounting of departures from steady-state 

operations. We shall refer to these errors collectively as gross 

errors. 

The presence of gross errors invalidates the statistical basis of 

our data reconciliation procedure. Since we cannot always 

preclude the possibility of their presence in process data, it is both 

necessary and desirable to test the validity of our assumption 

before proceeding with data reconciliation and coaptation 

calculations. For this purpose we shall construct the following test 

functions 

Under the null hypothesis that no gross errors are present the 

expected value of z is 0 
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Furthermore, since B1v is the imbalance associated with each node 

and Hii is the square root of the sum of variances of streams 

associated with node i, z is normally distributed and its variance is 

1. These two results follow directly from the theorem on linear 

combinations of stochastically independent and normally 

distributed random variables (Hald, 1952). On the basis of this test 

function z we can readily apply two-tail tests based on the normal 

distribution function to each node in the reconciliation graph. The 

derivation of the Type I error follows the standard treatment. We 

will refer interested readers to a similar development given by 

Nogita (1972). 

Although the magnitude of a gross error does not enter into its 

definition it clearly has an important bearing in the detection 

scheme. In order to relate our detection criterion more closely to 

the magnitude of errors in flow rates we carried out 25 simulation 

runs using the configuration and flow rate data for case 3. In each 

simulation run a set of flow measurements was generated as before. 

Using these values we perturbed the streams one at a time to 

determine the minimum error necessary to cause a gross error to be 

registered by this criterion, with a Type 1 error probability of 0.1. 

Two such determinations were carried out for each internal stream 

with respect to the two nodes to which it is adjacent, and both 

values were included in the evaluation. Nodes that had been found 

to contain gross errors initially were omitted from this 

determination. 

Figure 8 is a histogram based on more than 2000 values of 

minimum gross errors determined by the procedure described 

above. It shows the relationship between the number of streams and 

the magnitude of the relative error necessary to trigger the detection 

test. It will be noted that a large fraction of streams fail the 

detection test at relatively low levels of gross errors. For instance, 

gross errors at 20% of the flow rates were detected in 65% of the 

cases. If now the gross errors are raised to 50% of the flow rates, 

the test would correctly detect 85% of the cases. Thus, the 

detection test appears to be effective for the cases studied at a 

probability of 0.10 for Type I errors. 

At this point it is of interest to compare our test function with a 

parallel development by Nogita (1972). The new test function 

differs from Nogita’s in two important respects. First, it can be 

evaluated directly without any prior reconciliation calculations. It 

takes less time to compute, and it is also more sensitive to gross 

errors, since after reconciliation, a gross error is “smeared” over all 

the estimates and it becomes difficult to trace its effect. Second, 

Nogita uses a single statistic for the entire process, while a separate 

statistic is used at each node in the new test function. This 

difference is crucial for large problems because the effect of a 

single gross error may be swamped when combined with smaller 

errors under Nogita’s procedure. Moreover, since Nogita takes 

linear combinations of all the residuals, gross errors can pass 

unnoticed because of error cancellations. 

To highlight the differences between the two test functions, we 

offer the simple example shown in Figure 9, for which the 

measured flow rates are as indicated below each arc. Let Q = I. For 

this problem, reconciliation yields 

 cancellations. 

The new test function can be used in a scheme to permit rapid 

isolation and identification of gross errors. We shall now turn our 

attention to the development of such a scheme. 

 

An Error Identification Scheme 

 

We shall make the following simplifying assumptions in this 

treatment. (i) Normal random errors in flow measurements are 

negligible compared with gross errors and leaks. (ii) Nodal 

imbalances result, if and only if gross errors or leaks or both are 

present. (iii) Accidental cancellation of errors do not occur. Hence 

the magnitudes and signs of gross errors and leaks are immaterial. 

(iv) All arcs are measured. (v) There can be at most one arc 

between any two nodes. If more than one physical stream links two 

nodes, they will be merged in this analysis, since we cannot 

distinguish the gross error associated with each of them. All arcs 

will be treated as undirected. 

It should become clear as we proceed that assumption (iv) is 

included only for convenience. It could be dropped without 

materially affecting the outcome. 

We shall now introduce some notation to facilitate the 

presentation. We shall associate a logical variable with each node 

and use it as a label to indicate the condition of a given arc or node. 

Let mj and ni be the condition variables for arc j and node i. Then a 
value of “0” will be assigned to a condition variable, if no gross 

error is present (a “good” arc or node). Otherwise, it will be given 

a value of “1”. In addition we shall also assign a logical variable, li, 

to node i and let it assume values of “1” or “0” depending on the 

existence or absence of a “leak” at node i. 
The problem of detecting and isolating gross errors and 

 

 

 

 

 

The new test functions 

 

 

 

 show both nodes in error. But Nogita’s test function yields 

 

 

 

and fails to detect a most glaring gross error as a result of 
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Rule 3 states the implications of the condition of an aggregated 

node on “leaks” and on arcs that are external to the aggregated 

node. An equally useful result will be given next for arcs that are 

interior to an aggregated node (interior arcs). But before we do this, 

we should like to state explicitly the hypothesis underlying the 

following rules. 

In most instances in which a “bad” node is indicated, it is 

always possible to have “leaks” in addition to “bad” arcs, except 

for the special case covered by rule 4. But since a leak represents 

incomplete information on process structure, we deem it a less 

likely event than gross measurement errors that could be caused by 

malfunctioning or out-of-tune instruments. We shall, therefore, 

seek to account for a “bad” node in other ways and attribute it to a 

leak only if it cannot otherwise be accounted for. We shall refer to 

this as 

Finally, we shall state an important consequence of the 

application of rules 1 and 5 above. 

Theorem. A “bad” arc can always be identified, unless it is in a 

cycle of “bad” nodes. 

Proof. Suppose the theorem is not true. Let arc j1 be a “bad” arc 

that is not in such a cycle. Then its two adjoining nodes, i1 and i2, 
must be “bad” (ni1 = ni2 = 1) according to rule 1. Furthermore there 

must be at least one other “bad” arc adjacent to i1 or i2, for 

otherwise we would be able to identify j1 according to rule 5 and 

assumption (ii). Let this arc be j2 and let it be adjacent to i2 and i3  
(≠ i1). We can now repeat the argument above, replacing i2 by I = 

{i2, i3}, and conclude that there must be at least another “bad” arc j3 

which leads to another “bad” node, i4 (≠ i1). This process can 

continue until we exhaust all potential nodes in the process graph. 

We shall then have the contradiction: the aggregated node {i2, i3, 

… , it} must have another “bad” arc besides (i1, i2), but it could not 

be connected to node i1. Hence, the result. Note that if a single leak 

is present, the theorem still holds true. If more than one leak is 

present, the “bad” arcs will be isolated but some ‘‘good’’ arcs may 

be mislabeled. 

Three simple examples in Figure 10 will serve to illustrate the 

significance of this theorem. Figure 10a and 10b show two 

examples of cycles of “bad” nodes. All four nodes are “bad” in 

each case and there is no way of distinguishing the two cases from 

an analysis of nodal imbalances. Figure 10c shows a case in which 

all arcs are “bad”. Nodes 2-6 form a cycle of “bad” nodes.  
 

However, if the environment node is included in the original 

process graph, we know that nI = 0, I = {1, 2, 3, ... , 6}. Hence, we 

can always make a positive identification of “bad” arc, (1,2), using 

rule 5. 
We shall now present an algorithm for isolating and identifying 

gross errors and leaks. The algorithm consists of seven steps. In the 

first five steps our aim is to isolate the “bad” nodes and “bad” arcs 

and to eliminate the “good” nodes and “good” arcs from further 

consideration. Having thus narrowed down the field, we seek to 

identify the “bad” arcs and leaks in the next two steps. The seven 

steps are as follows. (1) Let t = 1 be the initial number of nodes in 

each aggregate. (2) Apply the imbalance test to each t-node 

aggregate generated from the (n + 1) node process graph. (Note 

that the environment node is always included in this algorithm). (3) 
For any t-node aggregate I:  If nI = 1, construct a list of adjacent 

(exterior) arcs. If nI  = 0, eliminate all the adjacent arcs and, in the 

case of t = 1, the isolated node, from further considerations. (4) 

Increase t by one (t := t + 1) and test to see if (a) t is greater than n, 

(b) t exceeds a predetermined value prescribed by the user, or (c) 

no connected aggregate of t nodes can be found. (5) Proceed to 

step 6, if any of the conditions in step 4 is satisfied. Otherwise 

return to step 2 with the new value of t and the revised list of 

eligible nodes and arcs. (6) Examine the final adjacent-arc lists. If 

a list contains only one entry, the arc listed must be “bad” 

according to rule 8. If a list is empty but the node (aggregate) has 

not been eliminated, then there must be a leak associated with this 

node according to rule 7. In either case we made a successful 

identification of the faulty component. (7) Nodes (aggregates) and 

arcs on the lists not susceptible to identification in step 6 represent 

cycles of “bad” nodes. All arcs in such a t-node cycle are suspect, 

but at least (t - 1) such arcs are “bad”. 

We shall now illustrate the algorithm with an example shown in 

Figure 11. The original process graph is shown in Figure 11a. The 

environment node is omitted purely for typographical convenience. 

Figure 11b shows the residual graph after applying the imbalance 

test to node-aggregate of size 1 (t = 1). Note that although the 

environment node is not present, we can apply the test to the 

balance around 
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the aggregate of nodes 1, 2,... , 12, which is the same as the balance 

around the environment node. A zero value of the condition 

variable for the environment variable would rule out any leaks. In 

this case, since the value is one, we cannot draw any positive 

conclusion about leaks. Similarly, Figure 11c and Figure 11d show 

the outcome of applying imbalance tests with t = 2 and t = 3. In this 

case, no connected aggregate of 4 or more nodes can be found. So 

we proceed to step 6. 

Referring to Figure 11d, arcs 3 and 8 are identified as “bad” arcs 

by rule 8. Application of rule 5 leads to the identification of “bad” 

arcs 10, 17, 23, and 26. The imbalance around the aggregate of 

nodes 11 and 12 identifies arc 6 as a “bad” arc (rule 8), and finally 

arc 15 being the only arc adjacent to the “bad” node 12 is clearly 

“bad” also. Notice that as an alternative we could have used rule 5 

in this last situation by viewing it as a linear chain consisting of the 

environment node, nodes 11 and 12. 

As an example involving the use of rule 7, let us consider the 

example in Figure 12. Imbalance tests involving aggregates of 1 or 

2 nodes were all negative, and if we stop at this point prematurely, 

we might incorrectly conclude that all arcs are bad. But a further 

test shows that the aggregate of nodes 1, 2, and 3 is “good”. Hence, 

we conclude from the application of rule 7 to the aggregate of 

nodes 4 and 5 that m2 = 0 and l4,5 = 1. 

Although the algorithm is most simply presented in the form as 

we have stated, computationally it is better to generate only the 

lists of nodes and arcs to be eliminated in step 3. The final lists of 

adjacent arcs may be constructed after the completion of the first 

five steps of the algorithm. This modification will save both storage 

and updating. The presence of unmeasured arcs will necessitate the 

aggregation of nodes linked by such arcs, but the procedure is oth-

erwise unaffected. 

Finally, let us point out that the proposed algorithm should be 

used primarily as a diagnostic aid. The outcome is clearly only as 

good as the simplifying assumptions. But in complex process 

networks, its use may help to narrow the scope of further enquiries. 

 

Conclusions 

 

The results of this investigation show that by making use of 

network and statistical information inherently available in the 

process, significant enhancement of process data can be obtained. 

The feasibility of implementing such a scheme on computers has 

been demonstrated. With process data now available in abundance 

as a result of process computerization the application of such a 

scheme to real-life processes is suggested. 

 

Appendix A. Derivation of Graph-Theoretic Results 

 

Assume for now that unmeasured arcs in the process graph, G, 

do not form cycles. Construct a spanning tree of G, which includes 

the s unmeasured streams u and any (n - s) of the measured 

streams. We shall refer to these measured streams as v3 to 

distinguish them from v2, the k measured streams each of which 

connects two nodes in the subgraph formed by the s unmeasured 

arcs. The remaining m – n – k measured streams will be denoted by 

v1. The material balances can now be written in terms of the inci-

dence matrix A partitioned in the following way 

We shall now generate an equivalent set of constraints by 

premultiplying eq Al by [A13 A2]
-1. The inverse exists, because the 

n arcs were chosen to be a tree of G. The resulting matrix 

is the cut-set matrix of G based on the spanning tree. 

The structure of K in this case is interesting. Each row of K 

represents a cut of G involving one and only one tree arc. The       

(n — s) x k partition of zeros arises from the fact that the first (n — s) 

cuts are made across the arcs in A13. These cuts could not include 

arcs in A12 without cutting any of the unmeasured arcs as well. 

Assuming Q to be block diagonal and letting Qi be the error 

covariance matrix for the measurements vi, the least-squares 

estimation for flow reconciliation with missing measurements can 

be formulated as 

Using eq A2, the constraints reduce to 

and an explicit and unique solution for u which is independent of 

the minimization 

The interpretation of the constraint (A5) is important. The 

matrix [K1 I] is the cut-set matrix for the graph whose arcs belong 

to A11 and A13. That is, the arcs are all external to the nodes linked 

by the unmeasured arcs. Hence, the graph corresponding to these 

constraints is the “reconciliation graph” with incidence matrix B1. 

Hence, the first result and the nodal aggregation procedure. 

We shall now consider the case when unmeasured arcs form     

(s - q) cycles. By leaving out (s - q) unmeasured chords, we could 

now construct a spanning tree of q unmeasured arcs and any (n - q) 

of the measured arcs, and A11, A13 and A2 as before. To the k arcs in 

A12 we now add the (s - q) unmeasured chords u2 so that in place of 

K3 in 
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eq A2, we now have K3 and K4. The development for v proceeds as 

before, but a term is now added to (A6), making it 

The upshot is that the unmeasured streams in the (s - q) cycles can no 

longer be uniquely determined. Their estimated values now depend on 

the values assigned to u2. Hence the second result. 

The notion of node aggregation in data reconciliation was first 

pointed out by Vaclavek (1969). By introducing the concept of a 

process graph we have found it possible to remove certain 

unnecessary assumptions (e.g., the rank of the incidence matrix) and 

simplify the treatment (e.g., eliminating the distinction between 

“internal” and “external” arcs). The treatment has also been extended 

with reference to inventory changes and unmeasured streams. Finally, 

we offer, for the first time, a rigorous proof of the principal graph-

theoretic results that clear the way for computer implementation. 

 

Appendix B. Solution of the Reconciliation-Coaptation Problem 

 

The material balance constraints in terms of the new incidence 

matrices are 

The Lagrangian for the estimation problem is 

 

Since Q is positive definite and the constraints are linear, the 

necessary and sufficient conditions for minimization are 

 

 
Substituting this result in eq B6, we obtain 

 

Using (B8) in (B3), we obtain 

 

The substitution of (B9) in (B8) yields the solution (8) for the 

measured streams. Substituting (B8) and (B9) into (B4) yields the 

solution (9) for the unmeasured streams. 
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Since B2 is square and nonsingular, eq B5 yields 

 

 

 


