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Abstract—The utility of observability and redundancy in characterizing the performance of process data estimators
was established in previous studies[10]. In this paper two classification algorithms for determining local and global
observability and redundancy for individual variables and measurements are presented. The concepts of bicon-
nected components, perturbation subgraphs and feasible unmeasurable perturbations are introduced, and their
properties are developed and used to effect classification, simplification and dimensional reduction. Step-by-step

application of these algorithms is illustrated by examples.

INTRODUCTION

In a previous paper[10] we developed the concepts of
observability and redundancy for constrained steady
state systems and demonstrated that these concepts are
useful in characterizing the performance of process data
estimators with regard to bias and uniqueness of an
estimate, convergence of estimation procedures and the
feasibility and implications of problem decomposition.
We also derived first and second order sufficient con-
ditions for local observability and, in the case of linear
constraints and measurements, global observability.
However, from the practical point of view the ap-
plication of these conditions suffers two serious draw-
backs. In the first place, they are based on matrix rank
tests which are computationally cumbersome. For sys-
tems for which local observability classification is of no
concern, one approach might be to perform a “struc-
tural” rank test[8). Secondly, and even more seriously,
since these tests are applied to the system as a whole,
they cannot be used to classify the observability of
individual variables. In this paper we shall show that by
exploiting the structural characteristics of a process
network we can develop theorems and algorithms which
would classify individual variables in such a network.

There has been a growing interest recently in develo-
ping graph-theoretical controllability criteria, which are
closely related to observability criteria, for linear
dynamic systems. Goknar[3, 4] developed necessary and
sufficient conditions, and an algorithm for testing con-
trollability using signal-flow graphs. Lin[5] introduced
the notion of “structural controllability”, which is in-
dependent of the values of non-zero system parameters.
This concept was related to properties of a directed
graph derived from the structure of the system equa-
tions. In this paper we shall develop graph-theoretical
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observability and redundancy criteria for steady state
process networks.

PROCESS NETWORK AND PERTURBATION SUBGRAPHS

We shall begin with a discussion of some graph-
theoretic concepts and terminology needed for the
classification algorithms, but it is not our intention to
provide a comprehensive introduction to graph theory.
The reader is referred to Mah and Shacham(7] for a
summary of some very useful properties of graphs and
digraphs and to Deo[2] for a fuller treatment of graph
theory.

As we have shown in a previous paper[6], the process
graph is a very useful representation of the topological
structure of a process. We used that representation to
obtain certain decomposition results for process data
reconciliation, coaptation and fault detection. In this
investigation we shall further exploit the structural pro-
perties of such a representation. We shall start with the
properties of the underlying graph in which the direc-
tions of arcs have been erased.

A node v is a cut-node or articulation point of a
connected graph G if its removal disconnects G. For
instance, in Fig. 1(a) nodes 2 and 5 are cut-nodes. A
graph is separable or 1-connected if it contains a cut-
node. Now suppose we split a cut-node into two nodes to
produce two disjoint subgraphs and let us refer to this
operation as splitting. If we repeat this operation until all
subgraphs are non-separable, then the resulting sub-
graphs are called blocks or biconnected components. The
four biconnected components derived from the graph in
Fig. 1(a) are shown in Fig. 1(b).

Clearly, two arcs belong to the same biconnected
component if and only if they belong to a common cycle.
Any two biconnected components are either disjoint or
have exactly one cut-node in common. Each cut-node
lies in at least two biconnected components and all other
nodes can belong to only one biconnected component. It
can also be shown that the rank and nullity of a graph are
preserved in the splitting operation. Further discussion
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(a)

Fig. 1. A graph and its biconnected components.

of the properties of biconnected components is given
elsewhere[11, 1].

Another operation which will be carried out in the
classification algorithm is the aggregation of two adjacent
nodes with the elimination of all arcs between them. We
shall refer to this operation simply as aggregation and the
aggregated node as a pseudo-node.

By contrast to a process graph we shall use the term
“process network™ to refer to both the structure of the
graph and the attributes of the arcs. Schematically, solid

(c)

lines and broken lines are used to represent mass flow
arcs and pure energy flow arcs, and temperature and flow
measurements are indicated by single and double slashes
on the respective arcs, as shown in Fig. 2. On the basis
of these attributes we can define a hierarchy of sub-
graphs. G; is the subgraph of G with all measured pure
energy flow arcs deleted. G is the subgraph of G with
all pure energy flow arcs deleted. Gm. is obtained from
G.. by deleting all arcs with flow measurements and
Gumuu is obtained from Gn. by deleting all arcs with

Fig. 2. A process network and some of its subgraphs: (a) a process network; (b) completely unmeasured mass flow
subgraph Gmuu; (c) a perturbation subgraph; (d) another perturbation subgraph.
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temperature measurements. Thus, Gmuu C Gmu C Gm C
G, C G. In this treatment we shall assume a one-to-one
correspondence between temperature and enthalpy;
measurement of one immediately infers measurement of
the other. For a given mass flow arc i the enthalpy is
related to the mass flow x; and energy flow y: by

_ )’.'/Xi, X7
H={0" 370 @

For the steady state process network under con-
sideration if the constraints consist of mass balances,

Anx=0 2

only, where x is the vector of mass flows and A, is the
incidence matrix of G.., the process network is termed a
mass flow network. If the constraints contain the energy
balances

Ay=0 3

as well, where y is the vector of energy flows and A the
incidence matrix of G, it is termed a mass-energy flow
network.

Now the solution (x, y) to eqns (2) and (3) is related to
the fundamental cycle (mesh) flows x> and y* by

x=Cm' ¥ )
y=C"y’ ©)

where C,, and C are the fundamental cycle matrices of
G and G, respectively.

It is extremely important to note that the space of
feasible solutions (x, y) for a mass-energy flow network
(abbreviated as G) is linear. The nonlinearity of the
energy balances appears only when we attempt to cal-
culate the enthalpy H: = yi/x; or the temperature. Thus, if
(x1, y1) and (x2, y2) are both solutions to eqns (2) and (3),
so are their linear combinations, although some of these
solutions may be physically infeasible, e.g. solutions
giving rise to negative absolute temperatures. In practice
this problem will not arise since only solutions close to
known feasible solutions will be considered.

It also follows from the linearity of the solution space
that linear combinations of feasible solutions for two
subgraphs G, and G are feasible solutions for G U G
and that the space of feasible solutions for G is spanned
by the vectors representing the feasible solutions for all
possible subgraphs. In particular, the feasible solution
space for G is minimally spanned by the feasible solu-
tions for the subgraphs which are the fundamental cycles
of G. The last observation gives rise to the following
important definition and result:

Definition. Let (x°, y°) be a feasible solution in G and
let (8x, 8y) be a feasible solution for G,, where G: C G,
5x—0 and 8y—0. G, is a perturbation subgraph of G at
(x° y%), if the measurements on G cannot distinguish x°
y®) from (x°+ 6x, y°+ 8y).

Lemma 1. In a process network with the underlying
graph G, an arc variable (xi, yi or Ti) is locally un-
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observable at (x°, y°) if and only if the arc lies in at least
one perturbation subgraph of G.

The lemma follows immediately from the definition
and the fact that feasible unmeasurable perturbations[10]
can occur in a perturbation subgraph. It provides a basis
for establishing sufficient conditions for observability
and unobservability. However, the required theorems are
sometimes more conveniently stated in terms of feasible
unmeasurable perturbations which will be studied next.
Figure 2 illustrates the subgraph Gmu.. and two pertur-
bation subgraphs derived from a simple process network.

OBSERVABILITY CLASSIFICATION IN MASS FLOW NETWORKS

For mass flow networks the properties needed for
observability classification are fairly obvious. However,
it is worthwhile stating the principal results in order to
bring out the contrast with the more complex situation of
mass-energy flow networks. We shall omit the proofs
which are given elsewhere[9].

Theorem 1. Let G be the underlying graph of a mass
flow network, let v be a cut-node of G and let G, and G.
be two subgraphs such that G; U G2= G = G and G: N
G2=v. Then

(a) No net mass flow can cross node v from G, to G
(or G2 to Gy).

(b) No net mass flow can enter or leave a biconnected
component of Gm.

(c) Nonzero mass flow in arc i is feasible if and only if
arc i lies in a cycle in Gm.

Theorem 2. In a mass flow network mass flow in an
arc i is unobservable if and only if arc i lies in a cycle of
unmeasured arcs.

An immediate consequence of Theorem 2 is the fol-
lowing corollary which follows from Theorem 8 of our
previous paper[10] and was previously proven by a
different technique[6].

Corollary. For constrained least-squares estimation in
a mass flow network, the flow estimate in an unmeasured
arc i is nonunique if and only if arc i lies in an un-
measured cycle.

Note that since the constraints and measurement
equations are both linear for mass flow networks, there is
no distinction between local and global observability.

OBSERVABILITY CLASSIFICATION IN MASS-ENERGY FLOW
NETWORKS

In mass flow networks the unmeasured cycle criterion
(Theorem 2) provided both necessary and sufficient
conditions for unobservability and observability. In
mass-energy flow networks there are two types of
measurements (flow and temperature) and three types of
variables (temperature, mass and energy flows). With this
increase in complexity, it will no longer be possible to
write down such simple graph-theoretical conditions. In-
stead, sufficient conditions for observability and very
different sufficient conditions for unobservability will be
presented. Furthermore, since the energy balances are
nonlinear due to the products of flow rates and enthal-
pies, it will be necessary to distinguish global obser-
vability criteria from local observability criteria.

It is important to note that the sufficient conditions for
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Fig. 3. A blending system.

mass flow observability implied by Theorem 2 for a mass
flow network still apply in a mass-energy flow network.
That is, if every cycle in G, containing arc i has at least
one flow measurement, then x; is observable using only
mass balances and mass flow measurements. Hence x; is
observable in the mass-energy flow network which in-
cludes mass balances and flow measurements as well as
energy balances and temperature measurements.
However, if arc i is in a cycle of G, in which all mass
flows are unmeasured, it may still be possible to calculate
these flows using temperature measurements and energy
balances. In fact, the difficulty in classifying obser-
vability in a mass-energy flow network arises precisely
because of the possibility that a cycle of mass flow arcs
might not have any mass flow measurements at all.

The blending system shown in Fig. 3 demonstrates the
points just made. The flow x; lies in no cycles in G,
and hence it is observable just using the mass balance
equations and flow measurements. However, x4 and xs
form a cycle with no mass flow measurements. Only
through the use of temperature measurements and the
energy balance can x4 and xs be calculated. It will be
seen that the possibility of performing this calculation
depends on the values of Hs and Hs.

We now present the basic theorems needed for obser-
vability classification. As in the case of the mass flow
network, it will be necessary to determine which flows
are feasible.

Theorem 3. Let G be the underlying graph of a mass-
energy flow network, let v be a cut-node of G, and let G,
and G; be the subgraphs such that G;UG.=G and
Gi1NG2=v. Then

(a) No net mass or energy flow can cross node v from
G, to G2 (or G2 to G1)

(a)
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(b) No net mass or energy flow can enter or leave a
biconnected component of G.

(c) Nonzero mass flow in an arc i is feasible if and
only if arc i lies in a cycle of Gm

(d) Nonzero energy flow in an arc i is feasible if and
only if arc i lies in a cycle of G.

The proof of Theorem 3 is very similar to that of
Theorem 1 and is omitted here for the same reason.

Theorem 4. Let G be the underlying graph of a mass-
energy flow network and let mass flow arcs i and j form
a cutset of G. T; is globally observable if T; is
measured.

Proof. Let G; and G be the two subgraphs of G after
deleting arcs i and j and let

_ { 1, if arc i is directed from G, to G ©
& =1-1,if arc i is directed from G to G,
_ { 1, if arc j is directed from G to G- a
%=1-1, if arc j is directed from G to G.
Then the mass and energy balances about G- are
aixi + a;x; =0 8)
aix;H; + ajx;H; = 0. )

Multiplying eqn (8) by H; and subtracting it from eqn (9),
we obtain

apx;(H; = H;) = 0. (10)
If x;#0, H; = H;, and H; cannot be perturbed without
affecting the measurement T;. If x; = 0, then by definition
H; =0 and its value is again fixed. ]

Corollary. Let G be the underlying graph of a mass-
energy flow network and let mass flow arcs, j, i1, iz,...
and ix form a cut-set of G. T; is locally observable, if T;,,
Ti, ... Ty are measured and H;; = Hi,=...= Hy.

We shall omit the proof which follows an analogous
development to that of Theorem 4 but illustrate the
application with reference to Fig. 4. Theorem 4 shows
that T;, T> and T in Fig. 4(a) are globally observable, and
by the corollary, if Hs = Hio, Ts is observable and Hs =
He¢=Hyo in Fig. 4(b)

The two foregoing results deal with sufficient con-
ditions for global and local observability. The next three

Fig. 4. Process networks.



Observability and redundancy classification in process networks 1945

theorems stipulate the sufficient conditions for global and
local unobservability.

Theorem 5. Let G be the underlying graph of a mass-
energy flow network.

(a) if arc i isina cycle of C of Gpmuu, then X;, y; and T; are
globally unobservable;

(b) if arc i is in a cycle C of G, Wwith exactly one
temperature measurement, then x; and y; are globally
unobservable.

Proof. (a) For the cycle C in Gmuu choose any arc k,
k#i, in C and choose a spanning tree for Gmu. for
which arc k is not a branch. Consider first an arbitrary
perturbation 8xx with T held constant. Then 8y« = Hidxi
and from eqns (4) and (5) we have also perturbed all x;
and y; in C by 8xc and 8y, respectively. Since there are
no measurements in C, these perturbations are clearly
feasible and unmeasurable, and since the argument does
not depend on the values of x;, y; or Hj in C, x; and y, are
globally unobservable.

Next consider an arbitrary perturbation 8y, with xi
held constant. From eqn (5) all y; in C are perturbed by
Sy« and H; = (y; = 8y)/x; with the sign determined by the
direction of arc j. In either case H; is perturbed to a new
feasible value and there are no measurements in C to
detect the change. Hence, by the same argument T; is
globally unobservable.

(b) Now use the same construction as before but let
arc k be the arc with the temperature measurement. The
first type of perturbations (8x;, 8y;) is still feasible and
unmeasured, but the second type (8y;, 8T«) would be
detected. Hence x; and y; are globally unobservable, but
no conclusion is drawn about the observability of T.. 1

An illustration of the above theorem may be found in
Fig. 5(a). Arcs S and 6 form a cycle in Gmu With exactly
one temperature measurement. Hence xs, xs, ¥s and ye
are globally unobservable. Note that even though mass
and energy flows are globally unobservable in a cycle of
G With exactly one temperature measurement, it is still

Fig. 5.
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Fig. 5. Hlustrations of steps in the observability classification algorithm.

possible for the temperatures to be locally or globally
observable. In Fig. 4(b) xs— X, y4— y- are globally un-
observable but Ts is locally observable if He= Hio
(Corollary to Theorem 4), and in Fig. 4(a) x1, x2, X3, y1,
y2, ys are globally unobservable but T, T, Ts are
globally observable.

Theorem 6. Let G be the underlying graph of mass-
energy flow network and let arc i be in a cycle C in G
with no temperature or energy flow measurements. Then
yi is globally unobservable. Furthermore, if arc i is a
mass flow arc, then T; is also globally unobservable.

Proof. Choose any arc k, k# i, in C and a spanning
tree for G for which arc k is not a branch. Perturb y:
arbitrarily by 8y« while holding xi constant. For each arc
j in C, y; is perturbed by 8y« according to eqn (5).
Furthermore, since H; = y,/x; for mass flow arcs, H; is
also perturbed. Since no measurements detect these
feasible perturbations, the theorem follows. |

One difference between this theorem and the preced-
ing one is that the cycle in Theorem 6 might include a
pure energy flow arc. For instance, in Fig. 6 arcs 1 and 2
form a completely unmeasured cycle. Theorem 6 applies
but Theorem 5 does not. Another difference is that the

cycle in Theorem 6 may contain mass flow measure-
ments which are explicitly excluded in Theorem 5.

Suppose all mass flows are globally observable just
using the mass flow measurements and mass balances.
Then any temperature or energy flow can be classified as
globally unobservable by Theorem 6 or globally observ-
able by the following corollary:

Corollary. Let G be the underlying graph of a mass-
energy flow network, let G be acyclic, and let arc i be
any arc in G. If every cycle containing arc i has a
temperature or energy flow measurement, then y: is
globally observable, and so is T; if arc i is a mass flow
arc. The proof of the corollary follows immediately from
Theorems 2 and 3(d).

2
I
(a) (b)

Fig. 6. Erroneous classification.
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In many cases observability will depend on the tem-
perature or enthalpy values of some arcs. The following
local unobservability theorem is an extension of
Theorem 5:

Theorem 7. Let G be the underlying graph of a mass-
energy flow network and let arc i be an arc in a cycle C
in Gma. If there is at most one value of enthalpy cal-
culated from all temperature measurements on C, then x;
and y: are locally unobservable. Furthermore, if T: is
unmeasured, and if Hi# Hi, T« being a measured tem-
perature, then T; is also locally unobservable.

Proof. Let arc k, k# i, be one of the arcs in C with a
temperature measurement. Choose a spanning tree for
G for which arc k is not a branch. Let x° and y° denote
the mass and energy flows before the perturbations.
Consider an arbitrary perturbation 8x. with Ti held
constant. Then x«=xC+0x, Hi=H' and y =
0+ H8x., and for any other arc j in C, x; = %"+ ;0%
and y; = y°+ adyx = x"H + a;H"6x, where a;=1 (or
—1)if arc j is oriented in the same (or opposite) direction
as arc k. But for all the arcs in C with measured
temperature HS= H,’. Hence y; = x;H." and H; = H" =
HP. Thus, these temperature measurements would not
detect the mass and energy flow perturbations, and x;
and y; are locally unobservable.

Now on the unmeasured arc i in C Hi=y/xi=
(H®x® + a:H8x)/(x2 + aidx:). If H® # H,’, then the value
of H, depends on 8x which is arbitrarily chosen. Hence,
T; is also locally unobservable. |

Some illustrations of Theorem 7 can now be given. If
H.= Hs, arcs 4 and 5 in Fig. 3 form a cycle as stipulated
in Theorem 7 and xs, ya, Xs, ¥s are locally unobservable.
In Fig. 5(a), if Hsa= H7, X3, X4, Xs, X7 and y3, Ya, ¥s, y7 are
locally unobservable, and if Hs# Hs, then Ts is also
locally unobservable. We note that Theorem 7 applies to
cycles with more than one measurement and provides
more information than Theorem 5 even for a mass flow
cycle with a single temperature measurement. For in-
stance, in the cycle formed by arcs 4, 5, 6 and 7 in Fig.
4(b), if He 7 He, T4 is locally unobservable by Theorem
7.

As we pointed out earlier, observability classification
based on matrix rank tests can only yield information
about the system as a whole, whereas from the viewpoint
of process analysis it is often crucial to identify the
individual variables with the various levels of obser-
vability or unobservability. The matrix rank tests are also
computationally cumbersome. For the mass-energy flow
network in Fig. S the rank of a 38 x 37 matrix would have
to be tested. In this case the test is inconclusive. But in
any case the matrix rank test can only establish local
system observability or unobservability, since the
evaluation must be carried out at a particular set of
conditions. By comparison with the matrix rank tests
which are basically numerical tests, the potency of
graph-theoretical classification criteria becomes very
apparent.

Because of these shortcomings matrix rank tests
should be used only as a last resort after we have
exhausted all the other alternatives of observability
classification. In the algorithm to be presented the graph-
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theoretic theorems will be used to classify as many
variables as possible. These variables can then be
removed from further consideration. The elimination
usually results in the decomposition of the process net-
work into smaller sub-networks. With this reduction in
dimensionality the matrix rank tests can then be applied
effectively.

It is important to note that in the following theorem
which gives both necessary and sufficient conditions for
local observability we will only be concerned with sub-
graphs of the original process graph. The absence or
existence of perturbation subgraphs will be the basis for
local observability or unobservability.

It should be clear that an arc with both mass flow and
temperature measurements would admit no unmeasur-
able perturbation in mass or energy flow. After its tem-
perature, mass and energy flows have been classified as
globally observable, it can be safely deleted from further
considerations. Arcs 1, 12, 15, 16, 17 and 18 in Fig. 5(a)
fall into this category. Similarly a pure energy arc i with
an energy flow measurement would admit no unmeasur-
able perturbation in energy flow. It too can be deleted
after y: has been classified as globally observable.

Next consider a mass flow arc i with mass flow
measurement but no temperature measurement. Clearly
it would admit no unmeasured mass flow perturbation,
but it could admit unmeasured energy flow perturbation
through temperature changes. Since arc i cannot be in
the mass flow perturbation subgraph, it may be con-
verted to a pure energy flow arc with the understanding
that T; and y: of the original arc are observable if and
only if y: in the corresponding pure energy flow arc is
observable. Such an arc should be so converted after its
mass flow has been classified as globally observable. Arc
10 in Fig. 5(a) is such an example.

It should be evident that after these deletions and
conversions, the only arcs remaining will be mass flow
arcs with measured temperatures only, unmeasured mass
flow arcs, and unmeasured pure energy flow arcs. Let the
incidence matrices correspond to these arcs be Ami, Am;
and A., respectively, and define a new matrix B, by

Bi=AmA (11)
where A is a diagonal matrix whose elements are the
enthalpies H; corresponding to the arcs in Am:. The most
general case of a matrix to be rank-tested will contain
sub-matrices Am;, Amz, Ae and By.

Theorem 8. Let a mass-energy flow network contain
only mass flow arcs with measured temperatures, un-
measured mass flow arcs, and unmeasured pure energy
flow arcs, let the incidence matrices corresponding to
these arcs be Am;, Am; and A., respectively, and let the
energy flow coefficient matrix corresponding to Am, be
B.. The network is locally observable if and only if the
rank of the partitioned matrix

(Aml Am, 0 0)
B 0 A A

is equal to n, the total number of mass and energy flow
arcs.

(12)
























