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1 Introduction  

1.1 Purpose of this document 

This white paper is an overview of an approach to pipeline diagnosis, with an emphasis on leak 

detection.  It illustrates parts of the overall approach with a demonstration, and explains how the demo 

fits into the overall strategy. 

1.2 Background 

Pipeline companies need to detect leaks quickly, but avoid unnecessary shutdowns due to misdiagnosis.  

Elaborate dynamic simulators model the pipelines.  The simulator packages also detect faults by looking 

at deviations between measured and simulated values.  When a measured flow deviates significantly 

below the simulated value over a significant time period, this indicates a leak, so an alarm is generated.  

But this fault detection is sensitive to other errors.  Those errors are either due to model errors, sensor 

errors, or human input errors.  The errors might be in terms of incorrect values, or in the timing of 

changes in those values.   

A separate diagnostic system is needed to determine the root cause errors, to rule out false alarms, and 

avoid unnecessary shutdowns. In choosing the root cause faults to be diagnosed, the emphasis is on 

detecting leaks, but this requires choosing additional root causes defined as needed to avoid false 

alarms about leaks 

2 Description of the liquid pipeline 

2.1 The process 

The example process is a simplified version of a liquid pipeline with three stations.  It includes 

measurements of flow, pressure, and density, sent from a SCADA system.  A process flow diagram is 

shown on the next page.   The symbol for orifice meters is used for flow meters, but their type is not 

important for the analysis.  

An instrument tag naming convention is used.  The first two digits represent the pipeline number.  The 

next two digits represent the station number in that pipeline.  F, P, D and A indicate flow, pressure, 

density, or amperes.   Instead of using unique identifying numbers after that, we identify the sensors in 

subscripts based on their roles at a station: “inj” for injection (flow in); “main” for main line, “out” for 

outlet of a station, “del” for delivery (flow out); and “disch” for discharge of a pump. 

The demo does not include many aspects ultimately needed in a full diagnostic system.  A real system 

has to deal many additional issues such as valve positions and their changes for station bypass, startup 

and shutdown; suppressing alarms during instrument calibration or while using pigs, and so on.  
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2.2 Process flow diagram for demo example Line 66 
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3 The simulator 

A detailed dynamic simulator would be running in a real system.  A diagnostic system uses sensor values 

or event input, manual input, and values calculated by the simulator (called “sim value” for short in this 

demo).   

In the demo, the diagnostic system just uses events.  But some of those events are assumed to be 

generated based on the simulated values or their deviations from measured values. 

For convenience in this discussion, we focus on just the parts of the simulation associated with the 

pipeline segments (called “pipes” in the demo).  We assume that the measured inlet pressure and flow 

to each pipe are used directly (or at least strongly impact) the inputs used in the simulation.   Then, an 

increase in the flow measurement at the input to a pipe eventually results in an increase in the 

simulated flow at the output of the pipe.    Similarly, an increase in the pressure measurement at the 

input to a pipe eventually results in an increase of both the simulated flow and pressure at the output of 

the pipe.  

The exact diagnostic logic may need to change if this is not the case, but this example illustrates the use 

of the numerical simulator as part of the diagnostic logic. 

If there is a leak in a pipe, then material will be diverted to the leak, so that the actual and measured 

pipe outlet flow and pressure will decrease.   But the simulation model is based on no leak being 

present.  So, the measured flow will be lower than the simulated flow.  A simulator package does more 

than simulation:  it also checks the simulated versus measured outlet flow.  When the deviation of 

measured outlet flow versus the simulated outlet flow stays too low for too long, it generates a material 

imbalance alarm event.   In the demo, we just use a “low versus sim” event for flow meters.   

4 Data reconciliation 

4.1 What is data reconciliation 

Data reconciliation provides estimates of process variables based on combining measurement 

information with process knowledge (such as mass or volume balances, or energy balances).  The 

process knowledge is in the form of algebraic equations and inequality constraints.  If the constraints are 

correct, and measurements fit assumptions about their noise, the resulting estimates will be better than 

those obtained just from raw measurements.   When systems have significant dynamics, the variable 

values are integrated over a long enough period so that the steady state algebraic equations are a good 

approximation.   

Data reconciliation has mainly been used for reconciling flow measurements, subject to material or 

volume balances.  In this case, dynamics are often handled for inventory changes.  For inventory 

measured by levels (or pressures), inventory change derivatives are treated as equivalent to additional 

flows.    So the inputs are flow and level measurements, and the outputs are better estimates of the 
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level changes and flow, that are 100% consistent with the material or volume balances specified as 

constraints.    

Data reconciliation is generally formulated as a least-squares optimization problem to minimize a 

weighted sum of the measurement adjustments subject to equality constraints.  The weights are based 

on assumptions about instrument accuracy, expressed as a variance (square of the standard deviation).   

When reconciling just material or volume balances, the constraints are linear.  The resulting solution 

(without inequality constraints) can be obtained by solving a set of linear equations.  

The filtering strategy and averaging period are important factors.  Filtering, or long averaging periods, 

filters out the higher frequency noise.  What is left of instrument error after heavy filtering is, by 

definition, instrument bias.  So, what data reconciliation is really doing is reconciling the instrument 

biases against each other.   

For a more complete overview of data reconciliation, including some of the original published technical 

papers, see http://gregstanleyandassociates.com/whitepapers/DataRec/datarec.htm  .    

4.2 A strategy for using data reconciliation in pipeline monitoring 

Data reconciliation will be used on the raw flow measurements over a period long enough to filter out 

most of the process dynamics variations, so that the steady state volume balances are a reasonable 

approximation.  The adjustments made to the flow meter will be used to calculate an estimated bias for 

each meter.   That bias estimate will be filtered over time, updated each time a new bias estimated.    

The idea is modeling a measurement as a sum of the actual value, a bias term that can only change 

slowly, and random noise with zero mean.  Instead of just using lightly filtered raw measurements in any 

analysis over the short term, you subtract the estimated bias for an “improved” estimate.  The purpose 

of the data reconciliation is to explicitly estimate flow sensor biases.  This use of data reconciliation 

emphasizes estimating values that change only slowly over the long term, which is the most appropriate 

use for steady state balances.  And it does not second-guess the full-blown dynamic simulator over 

shorter time periods.  

We also calculate an estimated loss at each pipeline segment, based on the difference of lightly filtered 

raw measurements, but corrected for the estimated biases, and corrected for dynamic imbalances 

calculated by the simulator.  

We formulate the fault model to include the root cause faults “high bias” and “low bias”, because they 

affect other variables and events depending on its value.   

There is a trade-off here between short-term accuracy and long-term accuracy.  If a leak really persisted 

a long time, its effects would gradually get absorbed into the bias estimates.   Using only steady state 

analysis, there aren’t enough flow measurements to estimate both biases and leaks – in fact there is 

really only enough to estimate the net effects of biases for sensors around each pipeline segment.   

That’s why we force biases to update only slowly over long time periods.   But in trade, we get more 

accurate variable estimates when the leak first starts.   The initial detection is far more important – then 
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the leak will never become a long-term leak.   This part of the system would not be able to address small 

leaks that might go undetected for long periods, but any system will have trouble with that.  

The bias strategy used is slightly different, but based on ideas used for an application at Exxon, as well as 

earlier work with steady state models and dynamics.  See the technical paper “Online data reconciliation 

for process control”, available at 

http://gregstanleyandassociates.com/whitepapers/DataRec/AIChE-82-OnlineDataRecProcessControl.pdf 

4.3 Data reconciliation is reflected in the demo as another event source 

In the demo, we assume that the data reconciliation portion of the diagnostic system is running and 

generates events.  The diagnostic logic in the demo just works on those events.   The events are “bias 

estimate low” and “bias estimate high”.  “Bias estimate low” means that the bias estimate has deviated 

too far below a threshold.   “Bias estimate high” means that the bias estimate has deviated too far 

above a threshold.  The point of these root causes and alarms is not to indicate leaks.  One purpose is to 

recognize alternate diagnoses instead of false leak alarms.   Another purpose is to trigger maintenance 

work, because a lot of misdiagnosis could occur otherwise.  

5 Diagnostic system 

5.1 Domain object model 

Domain objects are representations of what is being monitored.  Domain objects include individual 

equipment, collections of equipment such as an entire pipeline, and locations such as stations.   But 

domain objects could include users, and more abstract entities such as organizations.   

Domain objects have attributes such as active/inactive status, description, and so on.   

Domain objects are organized in a containment hierarchy.  For instance, the abstract object “Lines” 

contains Pipeline 66 and Pipeline 77.  Pipeline 66 in turn contains 3 stations and 2 pipeline segments. 

Each station in turn contains objects such as pumps, sensors, and so on.   This hierarchy is shown for 

Line66 in the screen shots in the appendices.  One object can be contained by more than one object.  

For instance, both a location object and an overall-equipment object could contain a pump.  This 

flexibility is available, but not yet used in the demo.  

Events in the fault model, such as root causes, are associated with domain objects.  For instance, certain 

kinds of faults, symptoms, and intermediate conclusions are associated with sensors, pipeline segments, 

and pumps.  These faults for a flow sensor, pipe, and pump are shown in the screen shots in the 

appendices. 

Organizing an application around domain objects and containment relationships is convenient for 

representation in the user interface, for inheriting properties and events when constructing the system, 

and for modularizing an application.   
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The domain objects in the demo represent pipes; pumps; valves; sensors for flow, pressure and density; 

stations, and pipelines.    The following screen shot shows a view of the containment links up and down 

from Line 66:  

 

The graph explorer is centered at “YOU ARE HERE”, looking multiple levels up and down the hierarchy.  

You navigate by clicking on any link, re-centering the display at that object.  The user is in “expert 

mode”, so there are options for editing the containment hierarchy and also problems associated with 

the domain objects.  
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5.2 Event generation 

A full diagnostic system receives some externally generated events, such as the material imbalance 

alarm events from the external simulation system.  Based on raw data and its data history, it also 

generates its own events as needed to represent significant process disturbances.   

This includes simple checks of measured values, simulated values, or their difference, as high or low 

versus limits.  It also includes time series analysis – generating events based on the time history.  For 

instance, standard deviation calculations for measurements result in events for zero or almost-zero 

standard deviation, or high standard deviation.   Zero standard deviation, called “flat line”, is useful to 

conclude a sensor is stuck, a common failure mode  (including, but not limited to cases where a sensor is 

stuck at the top or bottom of its range).   High standard deviation may indicate excessive noise in the 

sensor or the process.  (Excessive sensor noise is a symptom of some instrument failure modes.)   

Excessive noise in the process is a useful symptom because it could indicate situations like pump 

cavitation (which in turn could indicate a major leak upstream of that pump).   

Other events may be generated based on rates of change, occurrence of an event within a recent time 

period, and so on.  

The demo assumes that events are available, and just focuses on processing the events.   The events can 

be entered in arbitrary order.  Additionally, the system asks for input on other events.  In a manual 

system, this would be the main input method.  When prototyping an online system, the questions are 

equivalent to acquiring data selectively.   

5.3 Filtering 

In a full diagnostic system, filtering would have to be carefully considered prior to event generation – 

using it to filter out higher frequency noise for typical variables, and avoiding it where time series 

analysis is used.  Even aliasing should be looked at – avoiding the conversion of high frequency noise 

into lower frequency noise due to long data sampling intervals.  We assume filtering is already 

addressed during the event generation.  The demo just focuses on processing the events.  

5.4 Fault model 

The demo is based on an explicit graphical model of fault propagation from root causes through various 

symptoms and intermediate conclusions.  (Conversely, it can be thought of as a representation of the 

possible causes for any event.)   The fault propagation model is represented by a set of nodes 

(“problems”) and a set of “is a possible cause of” links between them.  The possible problems are 

associated with domain objects.   

5.4.1 Problems 

A problem is any condition that is abnormal, with undesirable consequences.  A “true” status indicates 

the bad condition is present.  False means “OK” - the problem is not present.  
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Problems include root causes, symptoms, and intermediate conclusions.  In implementation, the 

distinction is really only an indication of the problem’s location in the fault model.  This is the most 

convenient for model development and a consistent user interface, because at any time during 

development, someone might ask “why might a root cause happen”, generate some more fundamental 

root causes, and turn the previous root cause into an intermediate conclusion.   

Problems are always associated with a domain object – a piece of equipment or subsystem. The naming 

convention for problems is to include the name of the equipment or subsystem, followed by a colon, 

followed by the name of the problem. For instance, 6601Fmain:flatlined is a problem associated with 

the flow meter 6601Fmain, that its value is unchanging.   

In addition to the relationships to domain objects, problems also have a few properties (attributes) of 

their own.  The following screen image shows these attributes for the mainline flow 6601FMain:   

Properties of mainline flow 6601Fmain:low vs sim 
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The configuration properties (attributes) are above the grey line in the table above. Test quality is not 

yet used.  The mttf is “mean time to failure”, which affects the failure probability calculations.  For this 

demo, it is always left at the default value.   As long as all problem mttf values are at the same, they will 

have no impact.  The properties below that grey line apply to the current diagnostic status. This dynamic 

diagnostic status is included for convenience, although it is actually stored in a “diagnostic instance”.    

The Plan status of “A” is for “assertion” (a direct observation, based on manual input or data).  Other 

possibilities include unknown, and true/false variations for predicted (future) values or inferred (past) 

values based on possible delays due to the direction of the cause/effect model links.  

5.4.2 Root causes  

A root cause is literally a problem with no “upstream” problems that could have caused it.  The choice 

can be somewhat arbitrary, because for almost any existing root cause, you could ask another “why”:  

why did that happen.  People generally stop looking for more fundamental causes (stop asking “why”) 

when they reach a point where corrective action can be taken, and where looking for more fundamental 

causes would cross an organizational boundary where they can’t take corrective action.    

We define the possible root causes for each type of equipment or other domain object.  We try to 

define root causes that apply to equipment objects regardless of how they are connected to other 

objects.   However, this simple approach often has to be modified for several reasons 

(1) Significant equipment operation changes that affect downstream equipment can occur due to 

changes in input variables, without that equipment actually failing.  But the effects have to be 

propagated further downstream.  An example of this is pump cavitation caused by low inlet 

pressure.   The cavitation leads to large, high frequency variations in flow and pressure, and low 

flow out.  Those need to be propagated downstream, and to symptoms such as “excessive high 

frequency noise” for nearby flow, pressure, and amps sensors.  From the standpoint of the 

pump by itself, low inlet pressure is a root cause problem.  But in the overall system, there will 

always be reasons why the inlet pressure went low.  “Low inlet pressure” is really more of an 

interface variable for assembling the system by modules.   In the demo, we more specifically call 

this “inlet-pressure-low-NPSH” to highlight that the threshold for low pressure is near the NPSH 

(Net Positive Suction Head) for the pump.  

(2) Sometimes we know the model will only explicitly cover some equipment, but we still have to 

account for failures in other equipment.   Pumps illustrate this example as well.  In this demo, 

we do not yet explicitly model valves.  Yet a mainline valve with a  “stuck shut” failure upstream 

of a pump will lead to low inlet pressure.  Similarly, we do not model every short piece of piping 

in the immediate vicinity of the pump inlet.  A major leak in any of those pipes will also lead to 

low inlet pressure.   So instead, we provide catchall “root cause” failures like “upstream 

blockage” and  “leak near inlet” for the pump.  This provides a home to account for the myriad 

other possible failures.  The effects for all these failures are the same.  The test for all these 

failures is also basically the same – visit the site and perform a manual inspection near the pump 

inlet.  So nothing is really lost by this aggregation of root causes.   A diagnosability analysis 
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(discussed later) points to a need to combine root causes that can’t be distinguished from each 

other, when they have the same test and effects.   In the case of the demo, we moved the “leak 

near inlet” to a fault for a station called “leak between inlet and pump”.  

Root causes chosen for diagnosis should include faults that are common, and faults that have high 

impact.  But, the demo is not a complete system.  For the demo, we have included the following as 

representative root causes:   

5.4.2.1 For sensors: 

•  Biased high 

•  Biased low 

• Stuck high 

• Stuck low 

• Noisy sensor fault.  

• Bad 

“Bad” will cover other failures, missing data, and “bad PV” status from other systems or human entry.  It 

is defined, but not yet actually used. 

Bias errors are especially insidious, because the instruments appear to work normally, with values 

moving up and down over time.  A bias may go undetected for a long time.  Furthermore, a simulator 

needs information from sensors to drive it – at least some minimum set of independent inputs.  So bias 

errors propagate through the simulation, and end up affecting other deviation calculations between 

simulated and actual.  Estimates of leaks are extremely sensitive to errors in flow meters, so bias errors 

are especially significant for avoiding false alarms for leak detection. 

“Stuck high” means that the sensor reading is stuck at a particular value, higher than the actual value. It 

might be associated with hitting the top of the instrument range, or it might be stuck in range, but at a 

high value.  The direct tests and corrective action for stuck high and stuck low faults are the same – a 

field calibration check.  So, one goal of the fault modeling is to ensure that enough effects of this failure 

are represented, so that automated tests can recognize it.  (The “stuck” part is easy – testing for a 

flatlined reading by looking at standard deviation over time.)   

 “Stuck high” and “stuck low” are separate root causes because their impacts are quite different.   For 

instance, in the case of a mainline flow meter, “stuck high” could result in an apparent loss of material in 

the downstream pipe, and an apparent gain of material in the upstream pipe.  “Stuck low” generates 

apparent loss in the upstream pipe instead. 

“Bias high” and “bias low” are separate root causes for the same reasons.    

Bias faults are separate from “stuck” faults because the effects are different.  This is especially the case 

when analyzing rate of change – you can notice recent changes even with a bias fault, but you cannot 
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when a “stuck” fault is present.   Otherwise, they all have the same test and corrective action – a field 

calibration. 

We took shortcuts for the ammeters in the demo.  The ammeters and their root cause failure modes 

were not modeled.  Instead, the “actual amps” events associated with the pumps were used, so that 

their values are only accessible by local field readings.   There was enough SCADA data for the other 

variables that this local field testing wasn’t really needed for the key goal of classifying leaks versus 

other problems.   In a real system, the ammeters would be included, because they can provide 

confirming data, especially needed if other data is inconsistent or missing.  

For the density meters, their only fault was “recent inconsistency vs. sim”.   This was a shortcut for demo 

purposes.  The point has already been made about the importance of full sensor checking – for 

examples of the sort of checking needed in a real system, see the flow meters.   

5.4.2.2 For pumps:   

• Downstream blockage 

• Upstream blockage 

• Flashing material present 

• inlet-pressure-low-NPSH (“interface” variable usually propagated from upstream for station  

leaks) 

• Failed  

In the fault model, “flashing material present”, and any faults relating to upstream blockage or major 

upstream leaks lead to a conclusion “inlet pressure low NPSH” which leads to another intermediate 

conclusion “cavitation”.  Any of these “root causes” could in reality be effects of other failures – they 

should be considered part of an interface for connecting two modular fault models.  The need for these 

sorts of interface variables was discussed earlier.  And also as discussed earlier, these root causes 

provide homes for a myriad of other faults related to equipment not modeled, such as valves and short 

piping near the pump inlet.   

For Station 01 in the demo, the immediate upstream leak fault is associated with the station rather than 

the pump, as a natural home for the collection of piping and valves involved.  In the case of the initial 

feed Station 00, “upstream blockage” and “major leak near inlet” could not be distinguished by data, 

because there is no flow meter until after the pump.  So a more generic “feed supply problem” root 

cause is associated with Station 00.  This could the fault of pipeline equipment, or the fault of the 

customer supplying the feed for the pipeline.  

For applications beyond leak detection, additional failure modes would likely be included.  For instance, 

there would be one or more failure modes that lead to loss of efficiency compared to the normal pump 

curve, and perhaps failures that lead to vibration if vibration is monitored.   

5.4.2.3 For pipeline segments:   

• New leak 
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• Sustained leak 

•  Batch misalignment (transient timing errors related to the time a batch of new material with 

different density is present) 

A  “new leak” is distinguished from a “sustained leak” because a “new leak” is diagnosed only detecting 

recent sudden changes.  Monitoring transient variable changes (such as rate of change or detecting step 

changes) is more sensitive for initial leak detection than depending on the magnitude of the variables 

themselves.    

However, that transient data analysis is also sensitive to noise and tuning problems.  More importantly, 

that data is transient and will disappear over time.  For instance, consider variables like flows and 

pressures jumping from one steady state to another due to a sudden leak.  Transient analysis 

calculations could include calculating rate of change, detecting step changes, or looking for the presence 

of other events within a time window.  But, after some time has elapsed, all these symptoms disappear 

(return to false).  So we need a root cause fault as an early indicator of a leak, and another one that can 

persist after the initial transient symptoms disappear.    

Both the “new leak” and “sustained leak” problems lead to an intermediate conclusion called “leak” 

used for most downstream propagation.  

5.4.2.4 For stations:  

• Leak between inlet and pump 

• Leak between pump and mainline flow meter 

• Leak between mainline flow meter and outlet 

• SCADA failed 

• Recent shutdown 

• Recent startup 

The latter 3 were defined as placeholders, but not actually used yet.   The leaks were defined for 

different zones in the station, because the effects of each leak on various sensors are different.  

5.4.2.5 For valves:  

Valves failures are not included in the demonstration.  At a minimum, they would have separate failure 

modes for stuck closed, stuck open, or stuck mid-range, because the effects are so different.  For valves 

used in control, an additional mode related to unstable operation (due to valve positioner problems, for 

instance) might be needed.   

5.4.3 Symptoms and intermediate events/conclusions 

Symptoms are events such as alarms or indications of high/low variables values that lead to diagnosing 

root causes.   Additionally, there are many intermediate conclusions that are defined.  These are mainly 

defined for convenience and ease in modularizing a system.   The intermediate conclusions often 

represent significant conditions.  For instance, for pumps, cavitation is significant.  However, it is not a 
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root cause.  Cavitation is caused mainly by low suction (inlet) pressure.  That low pressure in turn is 

caused by root causes such as a major leak at the inlet, flashing material present, and so on.    

Similarly, there are convenience events such as “reads high vs. actual” for sensors.  It has root causes 

“biased high” and “stuck high”.  When building fault propagation models, it is simpler to use the “reads 

high vs. actual” when linking to all uses of that sensor, than worry about all the reasons the sensor might 

be reading high. 

The events associated with various objects are shown in screen shots later.  The events not identified as 

root causes above are symptoms and intermediate events.  

5.4.4 Examples of problems defined for specific objects in the demo 

The following screen images show the Line 66 problems defined for pipe 00, the mainline flow 

6601Fmain, pump 6001Pump1, and Station 01.      

Most of these screen images were taken during or after a diagnosis, so some status information is 

indicated by background color. Reddish colors indicate true, meaning “yes we have a problem”.  Green 

shades are for false, meaning “OK”.   Yellow indicates “possible root cause”, a “suspect” with status 

otherwise unknown.   No color means unknown status and never under suspicion of failure, or that 

there is no ongoing diagnosis.    

There are variations in the shades of red and green.  The darkest colors indicate direct observations 

(“Assertions”).  The somewhat lighter shades indicate inferred values (values that must have occurred in 

the past – upstream of observations in the fault model).  The lightest shades indicate predictions – these 

are downstream of observations.  We have slightly less confidence in the current values for predicted 

status because there might be time delays associated with the cause/effect links in the fault model.  

The user is in “expert” (developer) mode, so in most of the following displays there are web links for 

modifying the model, unless cut off during the screen capture.



Pipeline Diagnosis Emphasizing Leak Detection - An Approach and Demonstration 

Page 16 of 36 

 



Pipeline Diagnosis Emphasizing Leak Detection - An Approach and Demonstration 

Page 17 of 36 

Associated Problems for 6601Fmain (mainline flow) 
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Associated Problems for 6601Pump1 
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Associated problems for Station 01 
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5.4.5 Navigating the fault model 

You can use the “Graph Explorer” to trace the impacts of problems backwards or forwards through the causal links.  The following screen image 

shows predictions of all the effects of new-leak fault.  “YOU ARE HERE” indicates new-leak as the center of the display.  The display drops the 

object L66Pipe00 part of the problem name when it is the same as the problem at the center of the display (e.g., as in “leak”).   
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Conversely, you can see the possible causes of a problem.  The following screen image shows possible causes for the true value of the flow vs. 

simulated value for 6601Fmain (the material loss alarm).  This includes a complete list of all possible root causes on the left hand side.   Again, 

since the user is in “expert” mode, there are web links to modify the possible causes and effects.   The yellow status color indicates “suspects” 

that might be true, but not yet known  (and possibly unknowable if they are masked by other faults).  
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5.4.6 Tests 

Every problem can have an associated test.  A test is a procedure directly associated with a problem, 

that determines if that problem is present (true), absent (false), or unknown. The simplest "tests" are 

just questions that can be answered through manual entry by a user.  By default, the system generates a 

question, with the question text specified as an attribute of a problem.  (If unspecified, if just defaults to 

the problem name followed by a question mark.)   More generally, a test could also represent 

automated data collection.  It could represent a request for data from another system.  It also could 

represent the reception of events carrying a true/false/unknown status, whether requested or not.  

For the pipeline demo, tests should be interpreted as requests for data from an external system, or as 

manual questions where that data would be unavailable.  

5.4.7 Test level 

Test (difficulty) level is an attribute of a problem.  It indicates the difficulty or expense of directly testing 

for the existence of that problem. This could be an automated or manual test; ultimately answering the 

question "do you have this problem?" Bigger numbers indicate more difficult/expensive tests. Test level 

can factor in time, expense, skill level required, or whatever else is important in prioritizing the tests. 

The test level guides the system in choosing which tests to request next.  The "cheapest" tests are 

chosen first, so that other problems can be inferred without the need for direct testing.   During 

diagnosis, you can set the maximum test level that you are willing to answer. The system supplies 

default test level descriptions, which may be overridden in applications.   

The test levels specified for the pipeline demo are:  

• Level –1:  No test.   

• Level 0: (Category only, used to automatically start diagnosis)  - unused in this demo 

• Level 1: Automated tests using SCADA data  

• Level 2: Automated, transient analysis of SCADA data that will disappear over time, usually 

involving rate of change, and more sensitive to tuning errors  

• Level 3: Field tests, hence leading to significant delays, cost, or risk of inaction  

• Level 4: Difficult tests, requiring significant effort, field work, time delay, lab tests, expertise, 

customer interaction, or process impact 

The following screen image shows the top part of a summary of the tests organized by test level for the 

pipeline demo: 
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5.5 Diagnostic reasoning 

The diagnostic system logic analyzes the events to arrive at a diagnosis. The basic approach taken is 

based on reasoning over the cause & effect models for events, as described in the “Guide to Fault 

Detection and Diagnosis“ at  

http://gregstanleyandassociates.com/whitepapers/FaultDiagnosis/Causal-Models/causal-models.htm 

You could achieve similar diagnostic results through other approaches such as rules, logic gates, and so 

on.  The demo is meant to focus on the elements needed in the fault models, rather than on the 

implementation.  

You can input any event at any time to start or continue diagnosis, simulating receiving unsolicited 

events in any order when prototyping an online system.  Alternatively, define a “level 0 test”, for the 

system to automatically start by asking a particular question.    Diagnosis and predictions can be initiated 

by selecting an event and value from the list box in the “Enter any problem” dialog as shown in the 

following screen image:  

 



Pipeline Diagnosis Emphasizing Leak Detection - An Approach and Demonstration 

Page 25 of 36 

5.6 Test Planning 

Test levels are significant in planning the tests to determine root causes.  Most sensor problems can be 

tested by a field check (a direct check of equipment on site), but that’s only a last resort for unattended 

sites.   There could be a significant delay, so we do the best we can with SCADA data.  However, even 

when a decision to shut down has to be made before the field check, the test requests should be useful 

for prioritizing the work following the shutdown, or for scheduling work for the next routine 

maintenance visit. 

5.7 Detectability 

When constructing complex models, it could be easy to make a mistake, or forget about some 

symptoms or the necessary test levels.  

Detectability analysis checks to see if all defined root cause faults can detected given the set of tests 

that are defined.   A problem is detectable for a given test level, if the occurrence of that problem leads 

to a change in an observable variable (symptom), using only tests at that difficulty level or easier.  For 

instance, among all the symptoms affected by a root cause, suppose the only tests are at level 3 or 

higher.  Then that root cause will be undetectable using just tests at level 1 or 2.  But it will be 

detectable at level 3 and 4.   

Since the system is based on causal models, this means there is a path of cause/effect links from the 

problem to some symptom with a test level less than or equal to the specified test level. This particular 

definition does not consider the effect of masking - it only guarantees that a problem can be detected if 

there are no other problems that mask it. So strictly speaking, it is fully applicable only in the case of a 

single fault assumption. 

During fault model development, if a root cause is undetectable, either it should be removed from the 

model, or more symptoms with tests should be identified.  Detectability is defined in terms of the test 

level because you often want to know if you can detect problems without using difficult/expensive tests.    

This can point to the need for finding cheaper tests to detect particular root cause problems.   

There is a display of undetectable root cause faults by test level.  All faults in the demo are detectable at 

levels 1 and higher.   

5.8 Diagnosability and ambiguity groups 

Checking for diagnosability also helps in fault model development.   Like detectability, it depends on the 

test level.    

A root cause problem is diagnosable for a given test level, if that root cause can be isolated (uniquely 

determined) using only available tests at that test difficulty level or easier. Root causes that would 

remain in ambiguity groups after all tests have been run (at a given test level) are not diagnosable (at 

that test level).  
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Ambiguity groups are the result of diagnosis with inadequate diagnosability.  They are sets of root cause 

problems with identical test results (for up to a given test level).   So, given the test level, root causes 

within an ambiguity group can't be distinguished from each other without defining more 

tests/questions.  

Diagnosability is defined in terms of the test level because you often want to know if you can diagnose 

problems without using difficult/expensive tests. This definition does not consider the effect of masking 

- it only guarantees that a root cause can be isolated if there are no other root causes that mask it. 

Strictly speaking, it is applicable only in the case of a single fault assumption. 

The following screen image shows the top part of the page for diagnosability analysis by test difficulty 

level for the pipeline demo.   For the pipeline demo, the analysis shows that some ambiguity groups are 

present at test level 1.  For each pipe, we cannot distinguish the symptoms of a transient material 

imbalance from a station outlet pressure without resorting to level 2 tests.   This isn’t surprising, since 

the tests that deal with transient behaviour are defined at level 2.  We don’t have the same problem 

with flows, because we use the additional information available from data reconciliation.   Luckily, this is 

not a problem, because we can derive the level 2 tests from SCADA data.  We don’t need to resort to 

local checks of conditions in the field.   

Diagnosability analysis helps point to the need to combine root causes.   Root causes are often 

aggregated when the effects are the same, and the tests and corrective actions are basically the same 

(e.g., sending someone to the field for a visual check for leaks).   Sometimes root causes are not 

aggregated.  An example is when there isn’t enough data to distinguish between problems that must be 

checked or fixed by different organizations.   

A diagnosability analysis for the demo is shown in the following screen image:
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Diagnosability by test difficulty level (top of page) 
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6 The platform on which the demo is built 

The underlying platform is intended to support applications for diagnostics and workflow management.  

It is cloud-based (web-based) Java code running under the Google “App Engine”, so the interface is a 

web browser.  (For workflows, the interface also includes e-mail and GoogleTalk, but that has not yet 

been extended to diagnosis).   

The user interface for the diagnostics is oriented towards manual interactions.  It can accept unsolicited 

arbitrary events from the set of possible events, and also has a test planner to ask questions once 

diagnosis is started.  The underlying representation, diagnostic engine, and test planner are independent 

of the user interface and not necessarily restricted to manual interactions.  

The underlying representation of the application is based mainly on directed graphs.  For instance, the 

domain objects and their containment hierarchy form one directed graph.  Similarly, the faults and 

symptoms and their causal relationships form another directed graph.   

However, the user interface does not yet support construction and manipulation of these directed 

graphs directly through a drag-drop-connect graphical interface.  Instead, alternate text-based displays 

are used.  This was partly due to a desire to run on the simplest web browsers (including large smart 

phones), and mainly due to lack of time.   The text-based “graph explorer” is a replacement for a full 

direct-manipulation graphical interface. 

The platform is not yet available commercially.  

 

7 Diagnosis examples 
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7.1 Example diagnostic view during diagnosis (top of page) 
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7.2 Example diagnostic view during diagnosis (bottom of page) 
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7.3 Completion of a diagnosis of a new leak 
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7.4 Multiple faults 

The following page illustrates a multiple fault situation.  There is a leak at the first pipe, and a biased-low error for the delivery flow meter.  Both 

are reported.  
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7.5 Conflicting data due to timing and threshold variations 

In the following example, the initiating alarm was the low mainline flow versus its simulated value.  A recent drop in the measured pressure 

6601Pin versus its simulated value agreed with that, as did a recent increase in the estimated leak (based on recent flow imbalance).  However, 

6601Pin was not low versus the simulated value.   That is, 6601Pin was dropping fast compared to simulation, but its absolute value had not yet 

crossed the low deviation threshold.  So, the events were somewhat inconsistent.   ).  Other root causes were ruled out by other tests, so there 

was only one root cause displayed, but it was now assigned a probability of about .53 instead of 1.0.   The fact that there was conflicting 

evidence is emphasized by the orange background color for the probability estimates.  This is immediately noticeable in the “Top Possible Root 

Causes”, but also is highlighted in the “assertions” section (on the second page of the screen shot).  Just the ones in orange are in conflict.     

This is a fairly common situation, regardless of implementation in rules, causal models, or other systems.  There are errors that could be related 

to timing.  Timing errors have many possible origins, such as:  

• Errors in the simulation model dynamics 

• One variable having a little more filtering than another, so it takes longer to respond 

• Inconsistent thresholds between variables or between variables and rate of change thresholds 

• Difficulty of estimating rates of change or timing on changes 

• One variable starting out much closer to its threshold than another when the fault occurs 

In this case, it is likely that the symptoms will all agree soon, and continue to agree until the variables with “recent” in their title decide that the 

changes weren’t recent enough.   So, there is a window of time where the leak is most likely to be noticed.  

In the meantime, the user still gets a warning that there is a suspected leak, with a lower probability.   
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Conflicting data part (top part of page) 
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Conflicting data (bottom part of page) 

 


